Machine Learning
Chest X-Ray Medical Diagnosis with Deep Learning - ④ Training
MeDiscovery
2021. 2. 21. 19:40
Chest X-Ray Medical Diagnosis with Deep Learning - ④ Training
start
BioinformaticsAndMe
Chest X-Ray Medical Diagnosis with Deep Learning
① Import Packages and Function
② Load the Datasets
③ Model Development
④ Training
⑤ Prediction and Evaluation
④ Training
: Keras의 model.fit 함수를 사용하여 모델을 훈련
: 현재, 데이터셋의 작은 부분 집합(~1%)에 대해 Training 하고 있음
: 전체 데이터셋의 Training에는 상당한 시간이 소요되므로 여기에서 모델을 교육하지 않음
: 다음 섹션에서 사전 교육된 모델을 로드할 예정
: 그러나 아래 코드를 사용하여 Colab에서 로컬로 모델 학습을 연습 할 수 있음
history = model.fit_generator(train_generator,
validation_data=valid_generator,
steps_per_epoch=100,
validation_steps=25,
epochs = 3)
plt.plot(history.history['loss'])
plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("Training Loss Curve")
plt.show()
: 사전 훈련된 가중치를 모델에 로드
model.load_weights("drive/MyDrive/nih/pretrained_model.h5")
다음 분석
Chest X-Ray Medical Diagnosis with Deep Learning
⑤ Prediction and Evaluation
#Reference
1) www.coursera.org/learn/ai-for-medical-diagnosis
2) github.com/vishrutskaushik/Chest-X-Ray-Medical-Diagnosis
Chest X-Ray Medical Diagnosis with Deep Learning - ④ Training
end
BioinformaticsAndMe